Search results for "post-transcriptional regulation"

showing 10 items of 26 documents

Dual role of the RNA helicase DDX5 in post-transcriptional regulation of Myelin Basic Protein in oligodendrocytes

2017

In the central nervous system, oligodendroglial expression of Myelin Basic Protein (MBP) is crucial for the assembly and structure of the myelin sheath. MBP synthesis is tightly regulated in space and time, particularly on the post-transcriptional level. We have identified the DEAD-box RNA helicase DDX5 (alias p68) in a complex with Mbp mRNA in oligodendroglial cells. Expression of DDX5 is highest in progenitor cells and immature oligodendrocytes, where it localizes to heterogeneous populations of cytoplasmic ribonucleoprotein (RNP) complexes associated with Mbp mRNA in the cell body and processes. Manipulation of DDX5 protein amounts inversely affects levels of MBP protein. We present evid…

0301 basic medicineCytoplasmBiologyDEAD-box RNA HelicasesMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineProtein biosynthesismedicineAnimalsHumansRNA Processing Post-TranscriptionalPost-transcriptional regulationRibonucleoproteinMessenger RNADDX5Myelin Basic ProteinCell BiologyRNA Helicase AOligodendrocyteCell biologyMyelin basic proteinMice Inbred C57BLOligodendroglia030104 developmental biologymedicine.anatomical_structurechemistrybiology.protein030217 neurology & neurosurgeryJournal of Cell Science
researchProduct

Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures

2020

G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the c…

0301 basic medicineRNA UntranslatedReviewEpigenesis GeneticHistoneslcsh:ChemistryDNA bases modificationheterocyclic compoundslcsh:QH301-705.5SpectroscopyRegulation of gene expressionG-quadruplexbiologyhistone-modifying activitiesGeneral MedicineNon-coding RNAChromatinComputer Science ApplicationsChromatinHistonehistone post-translational modificationsnucleosome remodelingepigeneticSettore BIO/11 - Biologia MolecolareComputational biologyhistone-modifying activitienoncoding RNACatalysisInorganic Chemistry03 medical and health scienceschromatin architectureAnimalsNucleosomehistone post-translational modificationEpigeneticsPhysical and Theoretical ChemistryMolecular BiologyPost-transcriptional regulationepigenetics030102 biochemistry & molecular biologyOrganic ChemistryDNA bases modificationsRNAG-quartetG-Quadruplexes030104 developmental biologyGene Expression Regulationlcsh:Biology (General)lcsh:QD1-999biology.proteinpost-transcriptional regulationInternational Journal of Molecular Sciences
researchProduct

Transient postnatal over nutrition induces long-term alterations in cardiac NLRP3-inflammasome pathway.

2018

International audience; Background and aims: The prevalence of obesity is increasing worldwide at an alarming rate. Altered early nutrition, in particular postnatal overfeeding (PNOF), is a risk factor for impaired cardiac function in adulthood. In the understanding of the initiation or progression of heart diseases, NLRP3 inflammasome and non-coding RNAs have been proposed as key players. In this context, the aim of this study was to decipher the role of NLRP3 inflammasome and its post transcriptional control by micro-RNAs in the regulation of cardiac metabolic function induced by PNOF in mice. Methods and results: Based on a model of mice exposed to PNOF through litter size reduction, we …

0301 basic medicineTime FactorsLitter SizeInflammasomesEndocrinology Diabetes and Metabolismmedicine.medical_treatmentMedicine (miscellaneous)InflammasomeOvernutritionInsulinNutrition and Dieteticsintegumentary systembiologyInflammasomeMicro-RNAsTransfection[SDV.MHEP.CSC] Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemAnimal Nutritional Physiological PhenomenaSignal transductionCardiology and Cardiovascular Medicinemedicine.drugSignal TransductionCardiac function curvemedicine.medical_specialtyHeart DiseasesCardiac dysfunctionsNutritional StatusContext (language use)Cell LineProto-Oncogene Protein c-ets-103 medical and health sciences[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemInternal medicineNLR Family Pyrin Domain-Containing 3 ProteinmedicineAnimalsPost-transcriptional regulationNutritionbusiness.industryInsulinMyocardiumRatsMice Inbred C57BLInsulin receptorDisease Models AnimalMicroRNAs030104 developmental biologyEndocrinologyAnimals Newbornbiology.proteinbusinessNutrition, metabolism, and cardiovascular diseases : NMCD
researchProduct

Post-Transcriptional Regulation of Iron Homeostasis in Saccharomyces cerevisiae

2013

Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in a wide variety of biological processes. Recent studies in Saccharomyces cerevisiae have shown that in response to iron deficiency, an RNA-binding protein denoted Cth2 coordinates a global metabolic rearrangement that aims to optimize iron utilization. The Cth2 protein contains two Cx8Cx5Cx3H tandem zinc fingers (TZFs) that specifically bind to adenosine/uridine-rich elements within the 3' untranslated region of many mRNAs to promote their degradation. The Cth2 protein shuttles between the nucleus and the cytoplasm. Once inside the nucleus, Cth2 binds target mRNAs and stimulate…

572 Biochemistryalternative 3' end processingSaccharomyces cerevisiae ProteinsIronTristetraprolinSaccharomyces cerevisiaeSaccharomyces cerevisiaeReviewyeastCatalysisInorganic Chemistrylcsh:ChemistryCth1TristetraprolinmRNA decayGene Expression Regulation FungalCth2medicineRNA MessengerRnt1Physical and Theoretical Chemistry3' Untranslated RegionsMolecular BiologyTranscription factorlcsh:QH301-705.5SpectroscopyMessenger RNAalternative 3′ end processingbiologyThree prime untranslated regionOrganic ChemistryQR MicrobiologyGeneral MedicineIron deficiencymedicine.diseasebiology.organism_classificationComputer Science ApplicationsDNA-Binding ProteinsRibonucleotide reductaseBiochemistrylcsh:Biology (General)lcsh:QD1-999Cytoplasmalternative 3' end processingTranscription Factorspost-transcriptional regulationInternational Journal of Molecular Sciences
researchProduct

The Catalytic Mechanism of Steroidogenic Cytochromes P450 from All-Atom Simulations: Entwinement with Membrane Environment, Redox Partners, and Post-…

2019

Cytochromes P450 (CYP450s) promote the biosynthesis of steroid hormones with major impact on the onset of diseases such as breast and prostate cancers. By merging distinct functions into the same catalytic scaffold, steroidogenic CYP450s enhance complex chemical transformations with extreme efficiency and selectivity. Mammalian CYP450s and their redox partners are membrane-anchored proteins, dynamically associating to form functional machineries. Mounting evidence signifies that environmental factors are strictly intertwined with CYP450s catalysis. Atomic-level simulations have the potential to provide insights into the catalytic mechanism of steroidogenic CYP450s and on its regulation by e…

Breast cancer; Cytochrome P450; Membrane modulation; Molecular dynamics; Phosphorylation; Prostate cancer; QM/MMCytochrome P450-Molecular dynamicslcsh:Chemical technology010402 general chemistryQM/MM01 natural sciencesCatalysislcsh:Chemistry03 medical and health scienceschemistry.chemical_compoundBreast cancerBiosynthesislcsh:TP1-1185PhosphorylationPhysical and Theoretical ChemistryPost-transcriptional regulation030304 developmental biologyGeneral Environmental Sciencechemistry.chemical_classification0303 health sciencesProstate cancerbiologyMechanism (biology)Membrane modulationCytochrome P450Ligand (biochemistry)0104 chemical sciencesCell biologyEnzymelcsh:QD1-999chemistryCYP17A1biology.proteinPhosphorylationCatalysts
researchProduct

Oligodendroglioma cells synthesize the differentiation-specific linker histone H1˚ and release it into the extracellular environment through shed ves…

2013

Chromatin remodelling can be involved in some of the epigenetic modifications found in tumor cells. One of the mechanisms at the basis of chromatin dynamics is likely to be synthesis and incorporation of replacement histone variants, such as the H1° linker histone. Regulation of the expression of this protein can thus be critical in tumorigenesis. In developing brain, H1° expression is mainly regulated at the post-transcriptional level and RNA-binding proteins (RBPs) are involved. In the past, attention mainly focused on the whole brain or isolated neurons and little information is available on H1° expression in other brain cells. Even less is known relating to tumor glial cells. In this st…

Cancer ResearchOligodendrogliomaGene Expressionmedicine.disease_causeHistonessheddingHistone H1Settore BIO/10 - BiochimicaGene expressionmedicineAnimalsRNA MessengerEpigeneticsRats WistarSettore BIO/06 - Anatomia Comparata E CitologiaTransport Vesicleshistone variantsCells CulturedCell NucleusMessenger RNAbiologyBrain NeoplasmsastrocytesBrainRNA-Binding ProteinsArticlesH1° histoneCell cycleChromatin Assembly and DisassemblyRatsChromatinCell biologyCell Transformation Neoplasticoligodendroglioma cellsHistoneOncologyoligodendroglioma cells astrocytes post-transcriptional regulation histone variants H1˚ histone RNA-binding proteins extracellular vesicles sheddingbiology.proteinextracellular vesiclesCarcinogenesispost-transcriptional regulation
researchProduct

Transcriptional and post-transcriptional regulation of iNOS expression in human chondrocytes

2009

Chondrocytes are important for the development and maintenance of articular cartilage. However, both in osteoarthritis (OA) and rheumatoid arthritis (RA) chondrocytes are involved in the process of cartilage degradation and synthesize important immunomodulatory mediators, including nitric oxide (NO) generated by the inducible NO synthase (iNOS). To uncover the role of iNOS in the pathomechanisms of OA and RA, we analyzed the regulation of iNOS expression using immortalized human chondrocytes as a reproducible model. In C-28/I2 chondrocytes, iNOS expression was associated with the expression of the chondrocyte phenotype. Peak induction by a cytokine cocktail occurred between 6 and 8h and dec…

Cartilage Articularmedicine.medical_specialtyAnti-Inflammatory AgentsNitric Oxide Synthase Type IIBiologyBiochemistryp38 Mitogen-Activated Protein KinasesChondrocyteArticleGene Expression Regulation EnzymologicGlucocorticoid receptorChondrocytesReceptors GlucocorticoidInternal medicineGene expressionmedicineHumansRNA MessengerRNA Processing Post-TranscriptionalPost-transcriptional regulationCell Line TransformedPharmacologyRegulation of gene expressionNF-kappa B p50 SubunitRNA-Binding ProteinsInterferon-Stimulated Gene Factor 3Janus Kinase 2Cell biologyNitric oxide synthaseEndocrinologymedicine.anatomical_structureCell cultureEnzyme Inductionbiology.proteinTrans-ActivatorsCytokinesZearalenoneSignal transduction
researchProduct

Nuclear-mitochondrial interaction.

2007

The biogenesis of mitochondria depends on the coordinated expression of nuclear and mitochondrial genomes. Consequently, the control of mitochondrial biogenesis and function depends on extremely complex processes requiring a variety of well orchestrated regulatory mechanisms. It is clear that the interplay of transcription factors and coactivators contributes to the expression of both nuclear and mitochondrial respiratory genes. In addition, the regulation of mitochondria biogenesis depends on proteins that, interacting with messenger RNAs for mitochondrial proteins, influence their metabolism and expression. Moreover, a tight regulation of the import and final assembly of mitochondrial pro…

Cell NucleusRNA-binding proteinRNA-binding proteinsCell BiologyCell CommunicationBiologyMitochondrionCell biologyEpigenesis GeneticMitochondriamitochondrial fusionMitochondrial biogenesisNeoplasmsMolecular MedicineAnimalsHumansMitochondrial fissionMolecular BiologyTranscription factorPost-transcriptional regulationBiogenesistranscriptional factorpost-transcriptional regulationTranscription FactorsMitochondrion
researchProduct

Sequential recruitment of the mRNA decay machinery to the iron-regulated protein Cth2 in Saccharomyces cerevisiae

2020

Post-transcriptional factors importantly contribute to the rapid and coordinated expression of the multiple genes required for the adaptation of living organisms to environmental stresses. In the model eukaryote Saccharomyces cerevisiae, a conserved mRNA-binding protein, known as Cth2, modulates the metabolic response to iron deficiency. Cth2 is a tandem zinc-finger (TZF)-containing protein that co-transcriptionally binds to adenine/uracil-rich elements (ARE) present in the 3′-untranslated region of iron-related mRNAs to promote their turnover. The nuclear binding of Cth2 to mRNAs via its TZFs is indispensable for its export to the cytoplasm. Although Cth2 nucleocytoplasmic transport is ess…

Exonuclease:YeastSaccharomyces cerevisiae ProteinsIronRNA StabilitySaccharomyces cerevisiaeAdaptation BiologicalBiophysicsSaccharomyces cerevisiaeBiochemistryDEAD-box RNA Helicases03 medical and health sciencesTristetraprolinStructural BiologyGene Expression Regulation FungalGene expressionGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRNA MessengerMolecular BiologyPost-transcriptional regulationGene030304 developmental biology0303 health sciencesbiologyChemistryPost-transcriptional regulationIron deficiency030302 biochemistry & molecular biologyIron-Regulatory ProteinsIron Deficienciesbiology.organism_classificationRNA Helicase AYeast3. Good healthCell biology[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsCytoplasmbiology.proteinGene expressionFunction (biology)
researchProduct

Regulatory RNAs and beyond.

2011

The dynamic regulation of biological processes by RNA has emerged as a key field in recent years, and was the topic of the 62nd Mosbacher Colloquium of the German Society for Biochemistry and Molecular Biology (GBM). The 2011 Colloquium, held in April in the romantic Neckar-river region, was also a celebration of the tenth anniversary of the RNA Biochemistry study group within the GBM, which acts as platform for RNA biologists and chemists within Germany and in other European countries.

Gene Expression ProfilingRNARNA-Binding ProteinsBiologyRNA BiochemistryBioinformaticsBiochemistrylanguage.human_languageGermanUpfrontGene Expression RegulationRegulatory sequenceGeneticslanguageHumansRNAPost-transcriptional regulationMolecular BiologyClassicsEMBO reports
researchProduct